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Abstract
The present study evaluated an integrated biomonitoring approach based on three different bioindicators: tree rings, lichens, 
and beetles in a complex environment (urban-industrial-forest). In Central Italy, four sampling sites were selected to assess 
the anthropogenic impact of cement plants taking into account (1) long-term exposure (1988–2020) through the analysis 
of trace elements in tree rings of Quercus pubescens; (2) medium-term exposure (2020–2021) through the analysis of trace 
elements in thalli (outermost portions) of the lichen Xanthoria parietina; (3) short-term exposure in spring 2021 through 
the bioaccumulation and evaluation of sample vitality in transplants of the lichen Evernia prunastri and a periodic survey 
of entomological biodiversity carried out during spring and summer 2021. Trace elements of industrial origin were found in 
tree rings, with different levels of accumulation between 1988 and 2020 and a maximum in 2012. Native thalli of the lichen 
X. parietina showed an overall low bioaccumulation of trace elements except for Cr, probably reflecting the influence of 
national lockdown measures. The transplants of E. prunastri showed a weak stress response in the industrial and urban sites, 
but not in the forest, and identified Tl and V as the main elements contributing to atmospheric contamination, with peaks at 
the industrial sites. Concerning the beetles, a significantly lower number of species was found at the Semonte industrial site.
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Introduction

Environmental pollution is a global issue, where anthro-
pogenic impact is the main cause of pollutant availability 
in the environment (Briffa et  al. 2020). Environmental 
pollution, determined by the accumulation of gases (e.g., 
 NOx,  SO2, VOC, and  NH3) and/or particulate matter (PM), 

defines significant negative impacts and risks for human and  
ecosystem health (EEA 2018). Therefore, the monitoring 
of environmental quality in urban areas is a sensible topic 
that generates significant interest. Environmental safety is 
determined by World directives, such as the World Health 
Organization’s (WHO) guidelines, and by National Emis-
sion Ceilings Directive that regulate environmental quality  
monitoring through regional environmental agencies (WHO  
2017; De Marco et  al. 2019). Traditional air quality 
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monitoring is widely available with each country hous-
ing environmental agencies tasked with this responsibility 
(https:// aqicn. org/ sourc es/). Nevertheless, several factors 
prevent the complete data collection necessary for the estab-
lishment of suitable policies. In some cases, monitoring sta-
tions are set upped to only measure specific pollutants and/or 
in defined periods not continuous. Moreover, the resource-
intensive maintenance of instruments requires significant 
financial investment that may generate the reduction of the 
quality of data acquisition.

Biomonitoring relies on the sensitivity of biological  
organisms (bioindicators) that interact with the environ-
ment where they live to gather valuable information (Costa  
and Teixeira 2014). Plants and animals are continuously  
exposed to environmental conditions that regulate their  
growth, physiology, productivity, and distribution  
(Malmstrom 2010). Although data interpretation in biomonitoring  
can be a complex undertaking, biomonitoring offers numer- 
ous advantages as a valuable tool for ecological and human 
health monitoring, primarily due to the widespread avail- 
ability of bioindicators.

Several organisms are currently used as bioindicators, 
among which were tree rings (Ballikaya et al. 2022), lichens 
(Abas 2021), and beetles (Parisi et al. 2018). According to 
current dendrochemistry applications, trees serve as effective 
monitor of pollutants, offering data for past decades (Binda 
et al. 2021; Ballikaya et al. 2022). Trees are subjected to 
continuous exposure to trace elements, which can be taken 
up through their roots, leaves, and bark. These elements are 
subsequently deposited in tree rings, allowing for the decod-
ing of environmental signals corresponding to each year of  
wood formation through the dendrochemistry approach (Perone  
et  al. 2018; Cocozza et  al. 2021). Lichens, given their  
close dependence on the atmosphere for water supply and 
mineral nutrients, are sensitive to the presence of substances 
that alter the normal atmospheric composition. Trace ele-
ments can be absorbed directly through the surface of thalli 
and accumulated (e.g., Vannini et al. 2019; Anderson et al. 
2022) thus indicating differences in the elements’ avail-
ability during their exposure to the environment. Insects, 
abundant and widely distributed in all habitats, can act as 
bioaccumulators and indicators of air pollution (Gutiérrez 
et al. 2020). Their response can be observed through altera-
tions in life cycle duration, mortality rate, and overall abun-
dance. Trees, lichens, and insects that grow in urban areas, 
namely in parks and gardens, ensure an effective distribution 
in the landscape, which can compensate for the lack of both 
historical pollution time series and artificial air monitoring 
networks (Baroni et al. 2023).

While biomonitoring studies usually focus on one specific 
taxon, a combined approach proved to be effective in forest 
(Burrascano et al. 2021, and reference therein) and urban 
environment (Pinho et al. 2016). The integrated response 

of several biological groups can reveal temporal and spatial 
patterns of environmental variables since different ecologi-
cal indicators, with varied characteristics, respond differ-
ently to human disturbance and can be present in the study 
sites in different times.

The study was aimed to detect the trace elements in a 
complex urban environment by using three different bioindi-
cators. The sampling of different biomonitors was designed 
to consider different durations of exposure in the environ-
ment, namely, long-term (ca. 30 years) exposure in wood 
(trees cores), medium-term (ca. one year) exposure in native 
foliose lichens, and short-term exposure in insects (beetles 
sampled from June to October 2021) and lichen transplants 
(exposed from April to July 2021). Lichens and tree cores 
are used as bioaccumulators, where bioaccumulation refers 
to the process whereby a substance present in the environ-
ment accumulates at the surface of an organism and/or pen-
etrates it (ISPRA Guidelines, Giordani et al. 2020).

Four different sites were selected by identifying as poten-
tial sources of environmental pollution two cement plants, 
listed by EEA (Holland et al. 2011) among the industries 
with the greatest environmental and health impact in Europe. 
Thus, an urban, a forest, and two different industrial sites 
were considered.

Materials and methods

Study area

The study area is in the Gubbio Plain, located in Central 
Italy (43°21′ N, 12°34′ E, 495 m a.s.l.). This extensive inter-
montane basin includes a valley region and the foothills of 
the Monti di Gubbio, situated to the north of the town. The 
primary sources of air pollutants (i.e.,  NOx,  SOx, As, Cd, Cr, 
Pb, and Ni) are two operational cement plants. Other rel-
evant sources of air pollutants (CO, VOCs,  PM2.5, and  PM10) 
are heating systems, followed by vehicular traffic (mostly 
CO and  NOx) and agriculture (the principal source of  NH3).

The first cement plant, the Ghigiano site, is a manufactur-
ing facility established in 1966, located 8 km away from the 
urban center of Gubbio. The amount of cement produced 
in the plant in the Ghigiano site is around 4 million tons 
per year (https:// www. colac em. com/ media/ userf iles/ files/ 
Colac em_ RS_ 2021(2). pdf). The second cement plant, the 
Semonte site, houses a cement factory built in 1926 and 
is located less than 2 km from downtown Gubbio, along 
a high-traffic regional road, with a cement production of 
1.3 million tons per year. Besides those two sites, the study 
area includes an urban site, Parco Ranghiasci, a park located 
downtown within a limited traffic zone, which was chosen 
as the reference for the urban environment. Finally, a forest 
site, namely, a control site, known as S. Bartolomeo, was 

https://aqicn.org/sources/
https://www.colacem.com/media/userfiles/files/Colacem_RS_2021(2).pdf
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selected in a rural environment situated 7 km away from 
the town center and Semonte site and 15 km away from the  
Ghigiano site. The S. Bartolomeo Forest site was specifically  
chosen to characterize environmental conditions that are less 
influenced by urban disturbances (Fig. 1).

Data on the deposition of some airborne pollutants in 
the study area are available at https:// apps. arpa. umbria. it/ 
webgis/ emiss ioni/ index. asp.

Sampling

Tree cores, lichens, and insects were sampled at the four 
sampling sites: Ghigiano and Semonte (industrial), Parco 
Ranghiasci (urban), and S. Bartolomeo (forest).

Three trees of Quercus pubescens Willd. characterized by 
a mean diameter at breast height (DBH) of 28 ± 3 cm and 
average age of 30 ± 2 years were selected in four sampling 
sites. Two cores per tree were collected at DBH by using 
an incremental borer (Haglof Company Group, Sweden) in 
April 2021 and then cut using a microtome (Gärtner and 
Nievergelt 2010). The tree ring width was measured using 
the LINTAB instrument (Rinntech, Heidelberg, Germany) 
and a Leica MS5 stereoscope (Leica Microsystems, Ger-
many). The raw tree-ring width chronologies were obtained 
by the software TSAP Win (Rinn 1996) and then statisti-
cally cross-dated to identify the year of tree-ring formation 
(Speer 2012). The Gleichläufigkeit statistical index and the 
relative significance value were calculated (Schweingruber 
1988; Speer 2012). The signature of the temporal evolution 
of environmental conditions was obtained over a long period 

through the trace element measurements in tree rings from 
1988 to 2020 (the common period of tree ring chronologies 
within sampling sites).

To consider medium- and short-term exposure, the lichen 
species were chosen among those most widely used in bio-
monitoring studies (e.g., Cocozza et al. 2016; Vannini et al. 
2017; Contardo et al. 2021). Regarding medium-term expo-
sure, fragments of the foliose lichen Xanthoria parietina (L.) 
Th. Fr., were collected in April 2021 from the tree trunks 
used for dendrochemical analysis, following ISPRA Guide-
lines (Giordani et al. 2020). Specifically, the outermost por-
tions (3 mm), corresponding to about 1 year of metabolic 
activity (Tretiach and Carpanelli 1992), were selected to 
obtain three analytical samples for each site.

To consider a short-term exposure, thalli of the fruticose 
lichen Evernia prunastri (L.) Ach. were collected from 
deciduous oak trees in a forested area of the Umbria Region 
(Stroncone), far from any local pollution sources. Prior to 
transplantation, extraneous residues such as bark and insects 
were removed from the thalli. Sample vitality was then ran-
domly checked by analyzing the photosynthetic efficiency. 
Lichen thalli were transplanted at the four sampling sites 
(three samples per plot), suspended to the branches of the 
trees used for the dendrochemical analysis, following ISPRA 
Guidelines (Giordani et al. 2020). An exposure of 12 weeks 
is regarded as optimal for E. prunastri (Loppi et al. 2019).

In the four sampling sites, the capture of saproxylic and 
non-saproxylic adult beetles was performed. Forest beetle 
community was considered because saproxylic species are 
closely related to tree wood (Speight 1989) and include 

Fig. 1  Localization of sampling 
sites in the study area: the 
cement plant site (Ghigiano), 
the urban cement plant site 
(Semonte), urban (Parco Rang-
hiasci), and forest (S. Bartolo-
meo) sites

https://apps.arpa.umbria.it/webgis/emissioni/index.asp
https://apps.arpa.umbria.it/webgis/emissioni/index.asp
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threatened taxa (see, Carpaneto et al. 2015), whereas non-
saproxylic beetles refer to all remaining species occupying 
other ecological niches. Many of the non-saproxylic species 
occupy unknown trophic niches (Audisio et al. 2015). The 
beetle sampling was carried out using four window flight 
traps (WFTs) per site for flying beetles suspended to the 
branches of the trees used for the dendrochemical analy-
sis (in total 16 traps). At each site, the WFTs were located 
approximately 10 m from each other. Traps were checked 
four times, approximately every 30 days, from June to Octo-
ber 2021 and then removed. Systematics and nomenclature 
followed Bouchard et al. (2011).

Trace element analysis

The tree core samples were measured with particle-induced 
X-ray emission (PIXE) technique at the INFN LABEC ion 
beam laboratory in Florence (Chiari et al. 2021), which is 
located a 3 MV Tandetron accelerator. A 3.00 MeV pro-
ton beam was used, extracted into atmosphere through a 
200-nm-thick  Si3N4 membrane. Beam size was defined by 
a 1.0-mm-diameter collimator, placed in vacuum before the 
extraction window. The tree core samples were positioned 
roughly at 1 cm from the beam exit window (the proton 
beam energy on the sample surface was 2.95 MeV consid-
ering the energy loss in the  Si3N4 window and the path in 
external atmosphere) and moved by micrometric stepper 
motors to allow aiming at a specific tree ring. Beam current 
intensity, indirectly measured by means of a rotating chop-
per (Chiari et al. 2002), varied between 3 and 4 nA (to keep 
dead time at few percent at most) and the measurements 
lasted 300 s each. Two X-ray detectors were used for PIXE 
measurements, a 10  mm2 (collimated to 3.5  mm2) Silicon 
Drift Detector (SDD), 4.5 cm from sample with He flow 
in front in order to reduce the absorption of lower energy 
X-rays in air, for light elements (Na–Ca) analysis, and a 150 
 mm2 SDD, 2 cm from sample, with 450 μm Mylar absorber, 
for heavy (> Ca) and trace elements. The collected PIXE 
spectra were then analyzed with the GUPIXWin software 
package (Campbell et al. 2010) using the trace element solu-
tion option, applying an instrumental parameter obtained by 
the analysis of X-ray spectra of external reference standards 
(NIST 1412 and NIST 610). The analysis of tree rings was 
performed in latewood, more uniform than earlywood in oak 
(Perone et al. 2018), and in one ring every four to obtain a 
consistent signal and check it within the intra-ring variabil-
ity (Ballikaya et al. 2023) by collecting data from 1988 to 
2020. The analysis defined trace element concentrations in 
earlywood of tree rings formed in 1988, 1992, 1996, 2000, 
2004, 2008, 2012, 2016, and 2020.

The trace element concentrations to be compared within 
sampling sites were normalized, using the following 
equation:

where valuex refers to the level of a specific year, and val-
uelowest and valuehighest refer to the lowest and the highest 
element concentrations, respectively, measured in tree rings 
of each site.

To determine trace elements in lichens, samples of X. 
parietina and E. prunastri were frozen, powdered and 
homogenized by grinding in a mill with Teflon balls. Con-
cerning E. prunastri, transplants (three samples, each com-
posed by 300 mg of powdered lichen material, for the con-
trol and each site) were analyzed in the University of Siena. 
Samples were mineralized with a mixture of 3 mL of 70% 
 HNO3, 0.2 mL of 60% HF, and 0.5 mL of 30%  H2O2. Diges-
tion of samples was carried out in a microwave digestion 
system (Milestone Ethos 900) for a total time of 30 min. 
Concentrations of trace elements (Ba, Ce, Co, Cr, Cu, Dy, 
Fe, Ga, I, Mn, Nb, Ni, Pb, Pr, Rb, Sr, Tb, Tl, U, V, Zn, Zr), 
expressed on a dry weight basis, were determined by induc-
tively coupled plasma mass spectrometry (ICP-MS, Perkin-
Elmer Sciex Elan 6100) using the “Total Quant” method 
with both standard (STD) and KED (kinetic energy disper-
sion) operating modes. This method was chosen in order 
to have the widest possible overview of the trace elements 
present in the study area at the time of the research. One 
procedural blank and one sample of the certified material 
GBW-07604 “Poplar leaves” were also analyzed.

The values of bioaccumulation in lichens, namely, the 
ratio between species-specific element concentration values 
in (i) native samples of X. parietina and the corresponding 
background element concentration values (B-Ratio) and (ii) 
exposed E. prunastri samples and the corresponding element 
concentration values measured in unexposed samples (EU-
Ratio) was calculated.

The interpretation of the ratios followed ISPRA Guide-
lines (Giordani et al. 2020). The attribution of a sampling 
site i to a class of the bioaccumulation scale (i.e., absence 
of bioaccumulation, low bioaccumulation, moderate bioac-
cumulation, high bioaccumulation, severe bioaccumulation) 
has to be performed on the basis of the mean value of the 
B ratio or EU ratio diminished by its uncertainty (e.g., for 
transplants:  EU(i) − Δ(EU(i)).

Chlorophyll a fluorescence measurements

Lichen vitality was assessed in thalli of the lichen E. pru-
nastri before and after a 12-week exposure in the study area 
by measuring the chlorophyll a fluorescence emission with 
a plant efficiency analyzer fluorimeter (Hand PEA, Hansat-
ech, Norfolk, UK). The maximum quantum yield of primary 
photochemistry calculated as Fv/Fm = (Fm – F0)/Fm, where 
F0 and Fm are minimum and maximum chlorophyll a fluo-
rescence and Fv = (Fm − F0) is the variable fluorescence, 

valuenormalized =
(

value
x
− valuelowest

)

∕
(

valuehighest − valuelowest

)
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and the photosynthetic performance PIABS, a global indicator 
of the photosynthetic performance, were measured (Strasser 
et al. 2004). The fluorescence parameters were determined 
in hydrated thalli (five measurements for each of three sam-
ples for a total of 15 measurements for the control and each 
site), after 10 min of dark adaptation, applying a saturating 
flash of light of 2400 µmol  s−1  m−2 for 1 s.

Statistical analysis

Descriptive statistics (means, standard errors) were calcu-
lated for all the measured trace elements in tree rings and 
lichens. One-way ANOVA with post hoc Tukey HSD test 
was applied to test the effect of site in environmental signal. 
Time series of the trace elements were analyzed through the 
Kruskal–Wallis test to test significant differences between 
the index levels of elements over time in relation to concen-
tration in years. To assess the relationships among trends in 
different elements and investigate spatial pollution patterns, 
principal component analyses (PCA) were applied to trace 
elements. PCA is an ordination technique to project onto 
several dimensions, generally two, defined by the axes of 
maximal variance (Hammer and Harper 2006). The principal 
components with eigenvalues greater than 1.0 were retained. 
Statistical analyses were performed using OriginPro 8 pro-
gram (OriginLab Corporation, Northampton, UK).

Results

Tree rings

Mean tree-ring chronologies ranged from 1988, 1986, 
1978, and 1988 to 2020 in Ghigiano, Semonte, forest, and 
urban sites, respectively. The mean tree-ring width was 
3.42 mm (± 0.15 mm) (Table 1). Cross-dating between site-
mean chronologies showed a Gleichläufigkeit value of 67 
(p < 0.05) (Table 1).

Trace elements detected in the tree rings by PIXE analysis 
were Al, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, 
Pb, Rb, S, Si, Sr, Ti, V, Zn, and Zr (Table 2). Concentrations 
of Al, Mg, Mn, and P resulted to be differently distributed 

within measured tree rings and sampling sites (Table 2). The 
ordination diagram (I and II components), resulting from 
PCA applied to biomonitors (wood), was grouped in four 
sampling sites (Ghigiano, Semonte, urban, and forest sites) 
for the measured tree rings (Fig. 2). The PCA defined an ele-
ment ordination in tree rings of Q. pubescens in Ghigiano, 
Semonte, and urban sites in 2012 that was not observed in 
the forest site (Fig. 2). The ordination PCA defined 23 PCs: 
the first component accounted for over 31% and the second 
for over 16%; two grouping of elements were obtained: the 
first group of elements was constituted by Al, Ca, Cu, Mg, 
Na, P, S, Si, Sr, and Zn and the second group by Br, Cl, Cr, 
Fe, K, Mn, Ni, Pb, Rb, Ti, V, and Zr (Figure S1). Moreover, 
the ordination PCA allowed to define representative ele-
ments in tree rings of Q. pubescens for each sampling site: 
Ghigiano site (Br, Ca, Cl, Cr, Cu, Mg, Ni, P, Pb, Rb, V, Zn 
and Zr), Semonte site (Al, Br, Cl, Cu, Fe, K, Mg, Mn, Na, P, 
Si, Ti and Zn), urban site (Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, 
P, S, Sr, Ti, and Zn), and forest site (Br, Cl, Cu, Fe, K, Mg, 
Mn, Na, P, Pb, Rb, Ti, V, Zn, and Zr) (Fig. S1). Therefore, 
elements were identified as differently distributed between 
sampling sites, except for Cu, Mg, P, and Zn which were 
found in all sites.

By observing the common elements (Cu, Mg, P, Zn) 
found in four sites, the highest normalized concentrations 
were found in 2012 in Ghigiano, Semonte, and urban sites 
(Fig. 3). A common high levels of elements were in 2020 
in four sites, while Cu and Zn resulted higher in 1992 and 
1996, respectively, in forest sites than others (Fig. 3).

Native lichens

The analysis of X. parietina samples revealed the presence 
of Cr, Cu, Fe, Mn, Ni, and Zn in the lichen thalli, with a low 
level of bioaccumulation of Cr in the industrial sites and of 
Zn in the urban site (Table 3). The Ghigiano site exhibited 
the highest concentration of Cr, which was 1.4 times higher 
than the concentration observed at the forest site, along with 
elevated levels of Fe. At the Semonte site, the highest con-
centrations of Mn and Ni were recorded, while the forest site 
showed the highest levels of Cu and Zn.

Lichens transplants

After 12 weeks of exposure to the environmental conditions of 
the sampling sites, all elements presented a certain degree of 
bioaccumulation at least in one sampling site, except for Dy and 
Rb (Table 4). Mostly, the elements showed a low level of bioac-
cumulation while a moderate bioaccumulation was found for Ce 
and Fe in Ghigiano, Zr in the forest site, Pr in Ghigiano and the 
urban sites, and U and V in Semonte and the urban site (Table 4). 
High bioaccumulation of V was observed only at the Ghigiano 
site, while severe bioaccumulation of Tl, the main air pollutant 

Table 1  Characteristics of the tree ring width chronology (P < 0.05)

Site Period Raw mean ring 
width (mm) of chro-
nology

Standard 
deviation 
(mm)

Glk

Ghigiano site 1988–2020 2.68 0.17 66
Semonte site 1986–2020 3.11 0.16 67
Forest site 1978–2020 3.85 0.14 69
Urban site 1988–2020 4.05 0.15 65
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Table 2  Concentrations 
(mg/g dry weight) of trace 
elements in the tree rings (mean 
values ± standard errors) in 
Ghigiano, Semonte, urban, and 
forest sites

Tree-ring Ghigiano site Semonte site Urban site Forest site Kruskal–Wallis

Mean
st.er

Mean
st.er

Mean
st.er

Mean
st.er

Al 0.024
1988 87.70 ± 12.9 17.4 ± 0.8 49.0 ± 2.5 -
1992 83.12 ± 25.6 147 ± 6 - 180 ± 89
1996 150 ± 76 148.0 ± 17.0 18.6 ± 0.9 148 ± 45
2000 35.19 ± 22.1 84.5 ± 11.6 22.1 ± 1.1 18.9 ± 2.2
2004 105 ± 97 203.2 ± 12.3 185 ± 9 211 ± 116
2008 132 ± 100 461 ± 147 663 ± 33 55 ± 8
2012 252 ± 91 458 ± 133 1082 ± 54 93 ± 5
2016 285 ± 168 476.5 ± 20.9 54.4 ± 2.7 105 ± 42
2020 147 ± 128 159 ± 34 426.7 ± 21.3 427 ± 121

Br 0.230
1988 0.60 ± 0.11 - - 0.38 ± 0.03
1992 0.2064 ± 0.003 0.153 ± 0.027 0.264 ± 0.013 0.67 ± 0.05
1996 0.631 ± 0.09 0.291 ± 0.028 - ± - 0.93 ± 0.17
2000 0.31 ± 0.07 0.25 ± 0.07 0.395 ± 0.020 0.24 ± 0.08
2004 1.220 ± 0.4 0.32 ± 0.06 0.270 ± 0.013 0.46 ± 0.05
2008 0.74 ± 0.25 - 0.113 ± 0.006 0.31 ± 0.07
2012 1.648 ± 0.3 1.11 ± 0.27 0.62  ± 0.03 0.156 ± 0.023
2016 0.64 ± 0.24 0.19 ± 0.04 - -
2020 - - - 0.257 ± 0.020

Ca 0.224
1988 2295 ± 53 2895 ± 354 5286 ± 264 1310 ± 140
1992 491.1 ± 12.4 1655 ± 892 1710 ± 86 895 ± 313
1996 1257 ± 819 1873 ± 257 3178 ± 159 1615 ± 736
2000 794 ± 271 1594 ± 511 2083 ± 104 1050 ± 524
2004 629 ± 275 933 ± 246 5805 ± 290 966 ± 433
2008 966 ± 282 1660 ± 234 6114 ± 306 2013 ± 735
2012 3060 ± 742 3691 ± 884 3368 ± 168 1350.5 ± 25.8
2016 1205 ± 401 1134 ± 285 4413 ± 221 1036 ± 231
2020 1650 ± 535 2096 ± 70 10,322 ± 516 2759 ± 1342

Cl 0.824
1988 141 ± 44 14.81 ± 10.5 - -
1992 55 ± 32 27 ± 6 - 50.9 ± 18.5
1996 62.6 ± 20.7 19 ± 8 10.0 ± 0.5 91.8 ± 11.5
2000 37.3 ± 22.9 14 ± 5 43.3 ± 2.2 61 ± 9
2004 71.2 ± 23.3 3.7 ± 2.6 - 37.9 ± 20.7
2008 45.26 ± 10.1 57 ± 7 29.2 ± 1.5 67.0 ± 25.2
2012 278 ± 70 39.7 ± 9 18.8 ± 0.9 35.3 ± 1.0
2016 337 ± 61 41 ± 4 36.2 ± 1.8 20.4 ± 8
2020 143 ± 82 19.41 ± 1.1 27.8 ± 1.4 3.4 ± 2.4

Co 0.763
1988 2.8 ± 0.7 2.4 ± 0.6 1.50 ± 0.08 -
1992 3.4 ± 1.0 1.0 ± 0.6 2.52 ± 0.13 1.163 ± 0.021
1996 4.3 ± 1.6 1.34 ± 0.23 1.81 ± 0.09 0.43 ± 0.10
2000 3.2 ± 1.6 1.160 ± 0.1 2.77 ± 0.14 1.60 ± 0.25
2004 4.9 ± 2.9 2.06 ± 0.04 5.24 ± 0.26 1.292 ± 0.013
2008 2.5 ± 0.7 4.08 ± 0.07 4.60 ± 0.23 -
2012 8.9 ± 1.1 4.3 ± 0.9 4.82 ± 0.24 0.77 ± 0.09
2016 3.9 ± 1.7 1.07 ± 0.07 2.79 ± 0.14 0.83 ± 0.11
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Table 2  (continued) Tree-ring Ghigiano site Semonte site Urban site Forest site Kruskal–Wallis

Mean
st.er

Mean
st.er

Mean
st.er

Mean
st.er

2020 3.81 ± 1.4 1.42 ± 0.23 3.21 ± 0.16 -
Cr 0.6

1988 16.2 ± 14.0 2.42 ± 0.12 0.77 ± 0.04 0.81 ± 0.12
1992 43 ± 50 2.0 ± 0.4 10.0 ± 0.5 9 ± 5
1996 26.2 ± 28.6 10.7 ± 0.4 2.42 ± 0.12 6.4 ± 2.8
2000 23.4 ± 25.9 16.1 ± 0.6 2.40 ± 0.12 2.0 ± 1.2
2004 114 ± 139 4.7 ± 1.5 8.596 ± 0.4 7 ± 3
2008 14.6 ± 17.8 19.0 ± 0.8 10.1 ± 0.5 1.2 ± 0.9
2012 21.9 ± 13.1 26.9 ± 2.1 14.8 ± 0.7 8.3 ± 1.4
2016 9 ± 6 2.80 ± 0.11 18.10 ± 0.9 0.53 ± 0.27
2020 10.0 ± 1.4 57 ± 5 3.53 ± 0.18 22 ± 5

Cu 0.17
1988 2.1 ± 0.5 1.9 ± 0.5 2.03 ± 0.10 0.659 ± 0.015
1992 2.4 ± 2.1 1.057 ± 0.010 2.00 ± 0.10 4.0 ± 1.0
1996 1.7 ± 0.8 0.61 ± 0.14 2.68 ± 0.13 2.6 ± 0.7
2000 4.1 ± 1.3 1.8 ± 0.5 3.16 ± 0.16 1.06 ± 0.05
2004 3.0 ± 1.7 1.3 ± 0.5 2.48 ± 0.12 1.5 ± 0.5
2008 4.3 ± 1.4 2.2 ± 0.4 4.60 ± 0.23 1.77 ± 0.12
2012 3.2 ± 1.2 3.7 ± 0.5 6.1 ± 0.3 1.86 ± 0.24
2016 3.3 ± 1.2 1.7 ± 0.5 2.39 ± 0.12 1.20 ± 0.08
2020 5.0 ± 2.6 3.0 ± 0.5 3.49 ± 0.17 3.5 ± 0.3

Fe 0.059
1988 274 ± 75 217 ± 38 159 ± 8 69.6 ± 14.3
1992 521 ± 93 121.0 ± 24.3 196 ± 10 361 ± 205
1996 534 ± 263 113 ± 39 155 ± 8 572 ± 344
2000 416 ± 194 256 ± 146 215.4 ± 10.8 240 ± 67
2004 1039 ± 253 441 ± 188 471.9 ± 23.6 315.0 ± 14.9
2008 653 ± 316 1658 ± 204 887 ± 44 159 ± 66
2012 2090 ± 1651 1483 ± 228 451.9 ± 22.6 664.7 ± 17.2
2016 595 ± 415 117 ± 30 273.8 ± 13.7 43.8 ± 2.8
2020 624 ± 199 2201 ± 146 170 ± 9 1049 ± 230

K 0.635
1988 2457 ± 132 1458 ± 208 1612 ± 81 2801 ± 305
1992 1892 ± 813 1281 ± 117 1464 ± 73 2731 ± 180
1996 1811 ± 761 1219 ± 250 1783 ± 89 3179 ± 132
2000 1507 ± 590 1139 ± 286 1664 ± 83 2525 ± 99
2004 1362 ± 497 1035 ± 212 1856 ± 93 2432 ± 147
2008 1269 ± 117 978 ± 319 1664 ± 83 1899.5 ± 17.3
2012 3013 ± 481 1415 ± 279 1774 ± 89 1232 ± 143
2016 1712 ± 232 708 ± 196 1392 ± 70 770 ± 30
2020 1662 ± 363 1447 ± 159 1857 ± 93 1127 ± 142

Mg 0.013
1988 96 ± 30 153 ± 8 224.1 ± 11.2 168 ± 7
1992 155 ± 95 310 ± 102 - 269.2 ± 10.4
1996 165 ± 140 107 ± 7 6.8 ± 0.3 348 ± 56
2000 43 ± 34 94.9 ± 20.5 67 ± 3 64.7 ± 27.2
2004 187 ± 183 138 ± 31 335.7 ± 16.8 322 ± 114
2008 205 ± 98 378 ± 78 490.5 ± 24.5 155 ± 75
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Table 2  (continued) Tree-ring Ghigiano site Semonte site Urban site Forest site Kruskal–Wallis

Mean
st.er

Mean
st.er

Mean
st.er

Mean
st.er

2012 292.1 ± 23.7 1171 ± 132 1232 ± 62 314.9 ± 20.5
2016 345 ± 117 176 ± 94 87.9 ± 4 313 ± 95
2020 604 ± 239 276 ± 30 766 ± 38 683 ± 52

Mn 0.009
1988 2.6 ± 1.8 1.30 ± 0.26 2.76 ± 0.14 5.0 ± 0.5
1992 5.7 ± 2.6 0.106 ± 0.016 3.08 ± 0.15 5.6 ± 0.6
1996 5 ± 3 1.9 ± 1.0 3.76 ± 0.19 7.0 ± 0.5
2000 4.4 ± 2.4 4.4 ± 1.7 3.80 ± 0.19 4.6 ± 1.4
2004 14 ± 4 1.03 ± 0.16 8.1 ± 0.4 4.4 ± 2.3
2008 4.6 ± 2.6 6.7 ± 1.7 8.4 ± 0.4 5.2 ± 1.1
2012 7.3 ± 2.7 25 ± 4 14.2 ± 0.7 6.2 ± 1.2
2016 4.5 ± 1.2 3.2 ± 1.1 5.01 ± 0.25 3.4 ± 0.4
2020 8.5 ± 2.2 21.0 ± 0.7 11.9 ± 0.6 15.9 ± 0.5

Na 0.088
1988 40.1 ± 28.4 64 ± 37 57.7 ± 2.9 -
1992 324.9 ± 19.3 613 ± 124 - 136.3 ± 24.7
1996 106 ± 32 85.5 ± 13.4 - 104 ± 9
2000 205 ± 37 58 ± 7 413.1 ± 20.7 130 ± 5
2004 375.2 ± 2.9 298 ± 7 - -
2008 151 ± 42 27.0 ± 0.6 - 28 ± 5
2012 344 ± 74 359 ± 42 854 ± 43 141.1 ± 20.6
2016 177.4 ± 12.0 338.6 ± 29.8 318.6 ± 15.9 289 ± 31
2020 482.4 ± 14.6 - 563.9 ± 28.2 600 ± 43

Ni 0.438
1988 1.14 ± 0.11 0.89 ± 0.27 1.02 ± 0.05 1.38 ± 0.18
1992 2.4 ± 0.7 0.93 ± 0.06 1.00 ± 0.05 1.28 ± 0.20
1996 2.2 ± 0.6 0.32 ± 0.06 1.21 ± 0.06 2.7 ± 0.7
2000 1.7 ± 0.8 0.55 ± 0.18 1.24 ± 0.06 1.1 ± 0.4
2004 3.0 ± 1.7 1.14 ± 0.27 1.32 ± 0.07 2.43 ± 0.03
2008 2.3 ± 1.1 2.9 ± 0.6 2.68 ± 0.13 0.53 ± 0.12
2012 4.6 ± 1.7 2.40 ± 0.21 5.35 ± 0.27 1.16 ± 0.14
2016 1.9 ± 0.7 0.58 ± 0.20 4.96 ± 0.25 0.79 ± 0.11
2020 1.7 ± 0.3 8.2 ± 1.0 1.21 ± 0.06 1.65 ± 0.25

P 0.009
1988 18 ± 7 - 163 ± 8 -
1992 15.5 ± 0.9 36.4 ± 1.8 118 ± 6 36.9 ± 14.1
1996 56.8 ± 12.3 13 ± 9 171 ± 9 45 ± 5
2000 15.4 ± 10.6 25.7 ± 0.7 233.1 ± 11.7 49.4 ± 2.3
2004 65 ± 7 92 ± 43 472.0 ± 23.6 87.1 ± 16.5
2008 94 ± 31 102.0 ± 13.6 388.8 ± 19.4 109.4 ± 21.5
2012 217 ± 85 249 ± 33 546.3 ± 27.3 124 ± 4
2016 179 ± 31 98.1 ± 15.9 315.9 ± 15.8 73.5 ± 12.0
2020 644 ± 181 674 ± 53 766 ± 38 525.6 ± 19.7

Pb 0.352
1988 1.00 ± 0.12 - 1.16 ± 0.06 1.2 ± 0.3
1992 2.4 ± 0.5 0.64 ± 0.16 1.24 ± 0.06 1.65 ± 0.18
1996 1.70 ± 0.21 0.26 ± 0.12 - 1.6 ± 0.4
2000 1.3 ± 0.4 1.03 ± 0.17 0.89 ± 0.04 1.07 ± 0.15
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Table 2  (continued) Tree-ring Ghigiano site Semonte site Urban site Forest site Kruskal–Wallis

Mean
st.er

Mean
st.er

Mean
st.er

Mean
st.er

2004 - ± - 0.28 ± 0.05 - 1.27 ± 0.21
2008 0.7 ± 0.3 0.55 ± 0.17 - 0.55 ± 0.09
2012 1.9 ± 0.3 3.29 ± 0.28 0.89 ± 0.04 -
2016 1.2 ± 0.3 0.22 ± 0.06 - 0.24 ± 0.03
2020 1.57 ± 0.24 - 0.95 ± 0.05 0.31 ± 0.07

Rb 0.755
1988 1.94 ± 0.24 1.32 ± 0.2 0.347 ± 0.017 1.8 ± 0.4
1992 2.5 ± 1.6 0.75 ± 0.07 0.76 ± 0.04 1.46 ± 0.15
1996 1.69 ± 0.19 0.66 ± 0.21 0.88 ± 0.04 2.46 ± 0.27
2000 1.5 ± 0.8 0.935 ± 0.022 0.61 ± 0.03 1.92 ± 0.25
2004 1.8 ± 0.5 1.99 ± 0.24 - 0.282 ± 0.028
2008 1.7 ± 0.9 1.00 ± 0.21 1.71 ± 0.09 1.94 ± 0.25
2012 2.3 ± 1.1 3.6 ± 0.5 1.13 ± 0.06 1.55 ± 0.27
2016 1.9 ± 0.3 1.0 ± 0.4 0.73 ± 0.04 0.59 ± 0.17
2020 1.6 ± 0.4 3.10 ± 0.07 1.11 ± 0.06 1.60 ± 0.21

S 0.466
1988 106.3 ± 15.6 66.6 ± 11.6 164.8 ± 8 44 ± 8
1992 79 ± 31 49.9 ± 13.4 138.5 ± 7 84.2 ± 14.1
1996 135.2 ± 21.6 61.1 ± 17.1 122.7 ± 6 112.7 ± 12.0
2000 104.9 ± 21.9 74 ± 6 201.9 ± 10.1 77 ± 3
2004 127 ± 31 105 ± 7 283.3 ± 14.2 121.7 ± 14.7
2008 97 ± 36 69.9 ± 16.1 274.5 ± 13.7 82.1 ± 22.9
2012 170.8 ± 14.8 129.4 ± 27.3 323.9 ± 16.2 105 ± 8
2016 127 ± 45 82.0 ± 18.5 228.5 ± 11.4 80 ± 8
2020 203 ± 39 75.0 ± 10.6 352.2 ± 17.6 145 ± 39

Si 0.062
1988 54 ± 9 55 ± 5 135 ± 7 32 ± 9
1992 73.1 ± 29.6 133.3 ± 29.3 209.2 ± 10.5 131 ± 53
1996 207 ± 36 69 ± 9 69 ± 3 190.6 ± 21.0
2000 83 ± 8 69 ± 37 123 ± 6 88.9 ± 11.8
2004 91 ± 34 280 ± 37 363.4 ± 18.2 100 ± 9
2008 143 ± 72 1028 ± 100 1029 ± 51 68 ± 8
2012 503 ± 451 179.8 ± 23.3 1322 ± 66 70 ± 7
2016 84.5 ± 26.2 671.4 ± 17.4 145 ± 7 81.0 ± 11.2
2020 274 ± 70 308.3 ± 22.4 703 ± 35 161.6 ± 12.3

Sr 0.49
1988 16.4 ± 2.3 6.2 ± 0.3 13.2 ± 0.7 5.3 ± 1.1
1992 4.0 ± 2.5 4.6 ± 1.1 5.87 ± 0.29 7.3 ± 1.7
1996 7.0 ± 2.1 4.9 ± 1.2 10.5 ± 0.5 11.1 ± 1.0
2000 6.5 ± 1.1 2.2 ± 0.8 4.96 ± 0.25 6.9 ± 0.5
2004 5 ± 4 4.2 ± 1.2 17.9 ± 0.9 5.4 ± 0.8
2008 10 ± 4 5.4 ± 0.4 22.2 ± 1.1 10.1 ± 0.9
2012 17 ± 3 9.7 ± 0.5 5.43 ± 0.27 9.78 ± 0.27
2016 12 ± 3 3.3 ± 1.4 7.9 ± 0.4 7.2 ± 1.8
2020 10.1 ± 2.1 2.015 ± 0.019 21.1 ± 1.1 17.6 ± 0.5

Ti 0.369
1988 2.075 ± 0.028 4.3 ± 0.6 7.1 ± 0.4 5.8 ± 0.5
1992 4.7 ± 0.8 1.2 ± 0.7 - 15.4 ± 1.2
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in the area among the considered elements, was found in both 
industrial sampling sites of Ghigiano and Semonte (Table 4).

Photosynthetic efficiency of lichen transplants

After 12 weeks of exposure to the environmental condi-
tions of the sampling sites, the physiological parameter 

of E. prunastri were lower than the control in all sites.  
However, Fv/Fm showed a statistically significant 
decrease with respect to the control value only in the 
urban site (− 17%, p level = 0.012) while the PIABS was 
significantly lower in the industrial and urban sites (up 
to − 29% with respect to the control) but not in the forest 
site (Fig. 4).

Table 2  (continued) Tree-ring Ghigiano site Semonte site Urban site Forest site Kruskal–Wallis

Mean
st.er

Mean
st.er

Mean
st.er

Mean
st.er

1996 3.4 ± 0.7 1.88 ± 0.24 - 5.4 ± 1.2
2000 2.1 ± 0.4 3.4 ± 1.0 3.36 ± 0.17 3.0 ± 0.9
2004 3.4 ± 2.4 4.0 ± 0.6 10.1 ± 0.5 3.4 ± 1.5
2008 1.9 ± 1.3 13 ± 4 14.6 ± 0.7 3.3 ± 0.8
2012 10 ± 4 30 ± 3 5.49 ± 0.27 5.7 ± 0.7
2016 4.0 ± 2.1 4.1 ± 0.9 9.8 ± 0.5 2.1 ± 0.6
2020 4.8 ± 1.6 15.9 ± 0.9 0.71 ± 0.04 6.7 ± 2.3

V 0.199
1988 0.810 ± 0.014 - - -
1992 1.0 ± 0.6 1.58 ± 0.06 - -
1996 1.9 ± 1.2 0.26 ± 0.06 - 0.98 ± 0.08
2000 0.67 ± 0.09 1.8 ± 0.3 1.25 ± 0.06 1.307 ± 0.011
2004 1.19 ± 0.08 - - 0.324 ± 0.006
2008 1.53 ± 0.18 0.86 ± 0.05 1.79 ± 0.09 0.80 ± 0.26
2012 0.923 ± 0.024 1.77 ± 0.17 - 0.93 ± 0.24
2016 0.37 ± 0.11 1.21 ± 0.10 - -
2020 1.59 ± 0.10 - 1.86 ± 0.09 2.32 ± 0.22

Zn 0.227
1988 2.8 ± 0.4 1.47 ± 0.24 1.60 ± 0.08 -
1992 2.1 ± 0.7 0.42 ± 0.11 3.07 ± 0.15 1.58 ± 0.27
1996 1.3 ± 0.5 0.62 ± 0.05 3.87 ± 0.19 5.02 ± 0.22
2000 1.9 ± 1.4 1.16 ± 0.12 3.36 ± 0.17 1.9638 ± 0.0020
2004 1.9 ± 1.6 0.99 ± 0.22 4.86 ± 0.24 2.13 ± 0.25
2008 2.6 ± 1.0 2.70 ± 0.14 6.3 ± 0.3 2.55 ± 0.28
2012 3.0 ± 1.0 4.40 ± 0.07 7.3 ± 0.4 1.65 ± 0.18
2016 3.2 ± 2.1 1.51 ± 0.21 4.26 ± 0.21 1.4 ± 0.4
2020 3.2 ± 1.4 7.6 ± 0.6 4.18 ± 0.21 3.5 ± 0.6

Zr 0.185
1988 1.13 ± 0.10 1.03 ± 0.04 - -
1992 1.0 ± 0.7 0.915 ± 0.027 0.73 ± 0.04 0.84 ± 0.07
1996 - - - -
2000 - - - 1.22 ± 0.17
2004 0.7 ± 0.5 - - -
2008 - - - -
2012 - 3.30 ± 1.7 - -
2016 - - 2.80 ± 0.14 -
2020 0.7 ± 0.8 - - -

Kruskal–Wallis was applied to test significant differences between the concentrations of elements in tree 
rings (p level values are given)
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Insects

The abundance of specimens, species, and threatened 
categories for each site was identified (Table 2). All the 
taxa collected during the field activities are alphabetically 
listed in Table 5 together with the proportion of the col-
lected species, grouped according to the prevalent trophic 
categories. We collected 478 specimens belonging to 57 
species referring to 23 families of Coleoptera (Table 5). 
Species strictly considered as saproxylic (sensu Carpaneto 
et al. 2015) are also reported in Table 5, together with 
their risk category at the Italian level (see Carpaneto et al. 
2015). The beetle assemblages were grouped according 
to the prevalent trophic categories, defined by Carpaneto 
et al. (2015). The most abundant species were Cetonia 
aurata and Protaetia morio (Cetoniidae), respectively, 
with 94 and 80 specimens. Regarding the IUCN risk cat-
egories, the sampled saproxylic beetles were classified as 
follows: near threatened (NT; 3 species) and least con-
cern (LC; 18 species). Xylophagous and saproxylophagous 
accounted for 5.7% of the total sampled species, followed 

by Sap-feeder (4%), predators (2.28%), and only two speci-
mens of mycophagous were collected.

Discussion

Environmental signal by trees

The study revealed distinct patterns of trace element accu-
mulation in tree rings across time and space. The detection 
of trace elements in tree rings provided insight into the avail-
ability of several elements (Al, Br, Ca, Cl, Co, Cr, Cu, Fe, K, 
Mg, Mn, Na, Ni, P, Pb, Rb, S, Si, Sr, Ti, V, Zn, and Zr) in the 
environment, information that was not previously available. 
The variability in tree ring composition over time allowed 
the assessment of temporal patterns of pollutant accumula-
tion in different sampling sites. The bioaccumulation of ele-
ments in tree rings presents some challenges in pinpointing 
the exact source, as the production of certain pollutants can-
not be attributed exclusively to specific anthropogenic activ-
ities. However, compelling evidence of trace elements in tree 

Fig. 2  Biplot diagrams from the principal component analysis of ele-
ments detected in tree rings of Q. pubescens on spatial (Ghigiano, 
Semonte, forest, and urban sites) and temporal scale (1988, 1992, 
1996, 2000, 2004, 2008, 2012, 2016, 2020). The biplot in the first 

and second component planes is shown with the elements (dots) and 
parameters (vectors) measured. Each dot indicates the average for the 
three samples
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rings was found in relation to the industrial activity of the 
study area. Chlorine and Br were detected in both the Ghi-
giano and Semonte sites. Chlorine is known as a potentially 

harmful element typically derived by the combustion of 
waste-derived fuel (e.g., Gerassimidou et al. 2021), while 
Br is used as halogen additives to reduce mercury emissions 
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Fig. 3  Heat map resuming the representative elements (Cu, Mg, P, 
Zn, the common elements detected in four sites) in tree rings of Q. 
pubescens for each sampling site, Ghigiano, Semonte, urban, and for-
est sites, obtained by PCA elements grouping (Fig.  S1). Values are 

mean normalized data of element concentrations in tree-rings (stand-
ard error is < 0.1). The highest values are represented by dark red, 
whereas the lowest values are represented by dark blue

Table 3  Trace elements concentrations (μg g-1 dry weight) (mean and uncertainty values) in X. parietina, bioaccumulation class in Ghigiano, 
Semonte, urban, and forest sites

Element Ghigiano site Semonte site Urban site Forest site

mean

Bioaccu-
mula-
�on 
class mean

Bioaccu-
mula-
�on 
class mean

Bioaccu-
mula�on 

class mean

Bioaccu-
mula-
�on 
class

Cr 2.4 0.3 2 2.24 0.15 2 2.05 0.28 1 1.76 0.22 1
Cu 4.12 0.22 1 4.28 0.15 1 2.54 0.03 1 4.82 0.25 1
Fe 662 54 n.a 575 100 n.a 586.2 14.1 n.a 639 103 n.a
Mn 17.8 0.9 n.a 22.8 0.8 n.a 11.0 0.3 n.a 20.6 0.8 n.a
Ni 0.98 0.06 1 1.04 0.21 1 0.60 0.15 1 0.79 0.25 1
Zn 18.6 0.9 1 15.6 0.4 1 25.0 0.5 2 25.5 0.9 2

Colours associated with bioaccumulation class follow ISPRA 2020 (green: low accumulation, blue: absence of bioaccumulation)
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(UNEP 2011). In the Ghigiano site, relevant concentrations 
of Cr, Cu, Pb, Rb, and V were found, indicating the area as 
a potential source of heavy metals and metalloids, a major 
threat to environmental and human health (Fan et al. 2021). 
In the Semonte site, the presence of Cu, Fe, Mg, Mn, Si, Tl, 

and Zn confirmed the existence of a contamination chain 
like heavy metals, metalloids, and “”non-metals, usually 
released from industries into the atmosphere, soil, water, 
and contaminating food (Pourret et al. 2021). Signals were 
detected in tree rings in 2012 in industrial and urban sites by 

Table 4  Trace element concentrations (μg  g−1 dry weight) (mean and uncertainty values) in the lichen transplants, bioaccumulation class in con-
trol Ghigiano, Semonte, urban, and forest sites

Control Element Ghigiano site Semonte site Urban site Forest site

mean mean
Bioaccumu-
la�on class mean

Bioaccumula-
�on class mean

Bioaccu-
mula�on 

class mean
Bioaccumula-

�on class
15.45 0.17 Ba 21.7 0.6 2 19.5 2.9 2 18.6 0.9 2 16.5 0.9 2
0.45 0.04 Ce 1.43 0.09 3 0.824 0.011 2 0.94 0.13 2 0.677 0.022 2
0.56 0.06 Co 0.45 0.03 1 0.44 0.06 1 1.03 0.07 2 0.61 0.04 1
3.18 0.24 Cr 3.5 0.3 1 2.7 0.4 1 2.69 0.21 1 5.1 0.4 2
5.43 0.28 Cu 7.7 1.2 2 7.3 0.4 2 7.4 0.9 2 8.1 1.1 2

0.0431 0.0028 Dy 0.0466 0.0028 1 0.039 0.003 1 0.038 0.007 1 0.0247 0.0015 1
256.3 29.1 Fe 573 44 3 443 51 2 467 43 2 349 35 2
0.173 0.005 Ga 0.334 0.025 2 0.2214 0.0012 2 0.211 0.027 2 0.274 0.008 2
12.10 0.04 I 18.5 0.5 2 12.6 1.2 1 11.3 0.6 1 11.80 0.12 1
35.27 2.74 Mn 27.2 2.3 1 42.3 2.8 2 30.9 14.7 1 24.7 2.3 1
0.205 0.007 Nb 0.40 0.03 2 0.33 0.04 2 0.43 0.06 2 0.340 0.017 2
1.37 0.21 Ni 2.89 0.22 2 1.92 0.20 2 1.80 0.05 2 2.1 0.3 2

1.250 0.013 Pb 2.20 0.21 2 1.90 0.16 2 1.69 0.12 2 1.57 0.17 2
0.0398 0.0009 Pr 0.125 0.028 3 0.073 0.007 2 0.092 0.012 3 0.084 0.005 2

7.4 0.7 Rb 6.7 0.6 1 6.0 0.6 1 8.2 1.3 1 7.2 0.7 1
20.1 1.6 Sr 28.53 0.10 2 23.0 0.5 2 21.2 1.8 1 20.9 1.4 1

0.0058 0.0009 Tb 0.0109 0.0011 2 0.0102 0.0015 2 0.0128290 0.0000008 2 0.0024 0.0007 1
0.0047 0.0007 Tl 0.0585 0.0019 5 0.098 0.006 5 0.01565 0.0007 2 0.0054 0.0024 1
0.0305 0.0010 U 0.052 0.005 2 0.074 0.015 3 0.063 0.003 3 0.0120 0.0029 1
0.4109 0.0004 V 1.67 0.25 4 0.91 0.06 3 0.96 0.09 3 0.678 0.011 2

14.4 0.8 Zn 21.1 2.3 2 30.6 12.8 2 15.8 2.5 1 19.7 4.4 2
2.38 0.23 Zr 3.70 0.15 2 4.1 0.3 2 3.61 0.11 2 8.2 1.0 3

Colours associated with bioaccumulation class follow ISPRA 2020 (green: low bioaccumulation, blue: absence of bioaccumulation, yellow: 
moderate bioaccumulation, red: high bioaccumulation, Tyrian purple: severe bioaccumulation)
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Fig. 4  Physiological parameters of E. prunastri, Fv/FM, and PI 
(N = 15; mean ± standard deviation), in control samples and sampling 
sites after 12 weeks of exposure: Ghigiano, Semonte, urban, and for-

est sites. One-way ANOVA defines the significance of the effects of 
the site. Different letters indicate statistical differences between sites 
at P < 0.05
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highlighting the pollution signals characteristic of antropiza-
ted ecosystems, deriving from anthropogenic contamination 
and traffic emission (Bibi et al. 2023). On the other hand, 
the forest site showed elements characteristics with different 
time frame. The common element accumulation in tree rings 
of 2020 on four sites might be attributed to various pro-
duction processes, including combustion in manufacturing 
industries, energy and transformation industries, and resi-
dential combustion (Capon and de Saulles 2023), suggesting 
a process of elements’ diffusion. However, it is worth noting 
that extremely toxic and hazardous metals like As and Hg 
(Index 2018) were not found in the tree rings in any of the 
sampling sites in Gubbio.

Environmental signal by lichens

The dual approach used for lichens provided information 
pertaining to two distinct time spans: 1 year, approximately 
corresponding to 2020—first months of 2021, in the case 
of native samples collected in situ and a shorter subsequent 
period (spring 2021) in the case of the transplants.

The analysis of thalli of X. parietina revealed enrichment of Cr 
in both industrial sites, which has been associated with the impact 
of cement production in previous studies (Paoli et al. 2017). An 
enrichment in Zn was found in the urban and forest sites and the 
latter also showed the highest concentration of Cu. The occur-
rence of these elements can be attributed to agricultural practices, 
primarily linked to the olive groves surrounding the forest site. 
Indeed, insecticides and fungicides often contain Cu and Zn, 
like the Bordeaux mixture  (CuSO4) and the Mancozeb® (Zn) 
(National Center for Biotechnology Information 2017).

When examining the medium-term contamination of the 
study area, it is important to consider the significant reduc-
tion in air pollution that occurred in 2020 resulting of the 
widespread lockdown measures implemented to curb the 
spread of the coronavirus infection (Donzelli et al. 2020; 
Ravina et al. 2021). This reduction in air pollution could 
be a contributing factor to the relatively low levels of trace 
element bioaccumulation (e.g., Tl which is instead highly 
accumulated in lichen transplants) observed in the lichen 
material corresponding to this period. However, it was not 
observed in tree rings perhaps due to the selectivity of ele-
ment absorption regulated by root, for example.

The analysis of the transplants identified Tl among the 
measured elements, as the primary contributing factors to 
atmospheric contamination in the study area. These find-
ings agree with similar studies carried out around cement 
factories (Demiray et al. 2012; Gallo et al. 2014; Paoli et al. 
2014, 2017). In fact, Tl can be present as an impurity in raw 
materials, and its compounds are volatile at high tempera-
tures (ATSDR 1992) making cement factories significant 
anthropogenic sources of this element (IPCS 1996). Vana-
dium appears to be predominantly associated with combus-
tion activities that involve heavy petroleum products, e.g., 
petcoke used as main fuel by the two cement factories (as 
reported in their 2021 Environmental Performance Indica-
tors). Although it is possible that residential combustion 
contributed to some extent to atmospheric contamination in 
the urban site, previous studies have shown that high con-
centrations of V are primarily linked to the use of petcoke 
as fuel in plant factories (e.g., Gallo et al. 2014), and V and 
Tl have been identified as reliable markers of cement factory 
activity. In addition, among the trace elements bioaccumu-
lated by transplants, a few lanthanoids (Ce, Pr, Tb) have been 
also detected. The accumulation of lanthanoids in mosses 
and lichens is commonly attributed to the deposition of soil 
dust (Wu et al. 2020), along with Fe. The presence of Zr, a 
traffic-related element (Lyubomirova et al. 2011), and U in 
the study area is likely attributed to the same origin, namely, 
the resuspension of soil particles from the many dirty roads 
in the surroundings. The presence of U is explained by the 
natural radioactivity of the study area (data from Regione 
Umbria, available at: https:// www. regio ne. umbria. it/  
docum ents/ 18/ 20164 312/ radio attiv ita+ natur ale/ 086b8 
f8b- 82ec- 476a- 8894- 66eb5 f013d 87?t= 15864 61453 107). 
The effect of a high-traffic road near the industrial site of 
Semonte is suggested by the higher concentrations of Mn 
and Zn, in agreement with similar studies carried out in 
urban areas (Paoli et al. 2013; Wu et al. 2020).

Transplanted lichen thalli were still alive at the end of the 
exposure period, confirming the ongoing functionality of 
the active component within the bioaccumulation process.

A decrease in fluorescence parameters is a non-specific 
physiological response to stress factors. In our study, this 
alteration can be likely attributed to the increased availabil-
ity of pollutants since the samples transplanted to the forest 

Table 5  Number of beetle 
specimens, species, and 
species included in Red List 
categories—near threatened 
(NT) in sampling sites: 
Ghigiano, Semonte, urban and 
forest sites

One-way ANOVA defines the significance of the effects of the site. Different lowercase letters indicate sta-
tistical differences between sites at P < 0.05

Beetles Ghigiano site Semonte site Urban site Forest site ANOVA

p level
Specimen 113b 245a 65b 55b 0.004
Specie 23a 7b 27a 29a 0.001
Specie—NT category 1 0 1 1

https://www.regione.umbria.it/documents/18/20164312/radioattivita+naturale/086b8f8b-82ec-476a-8894-66eb5f013d87?t=1586461453107
https://www.regione.umbria.it/documents/18/20164312/radioattivita+naturale/086b8f8b-82ec-476a-8894-66eb5f013d87?t=1586461453107
https://www.regione.umbria.it/documents/18/20164312/radioattivita+naturale/086b8f8b-82ec-476a-8894-66eb5f013d87?t=1586461453107
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site did not show significant difference from the control 
samples. A comparable reduction of the chlorophyll a fluo-
rescence emission in transplants of E. prunastri has been 
recorded in the center of Milan (Contardo et al. 2021).

Environmental signal by beetles

The beetle community was not characterized to demon-
strate environmental pollution. Beetles were characterized 
by wood-related populations and the presence of threatened 
species in urban environments (e.g., Forister et al. 2019; 
Kotze et al. 2022; Kitahara and Fujii 1997). Usually, these 
species are very sensitive to disturbances and can be valid 
indicators of environmental health. The beetle community 
sampled at the four sites showed differences both in terms of 
specimens and species collected. In particular, the Semonte 
and Ghigiano sites included most of the specimens collected. 
The Semonte site was integrated into an agroecosystem with 
oak trees arranged along a road and agricultural fields. The 
abundance of specimens attributable to a few species is typi-
cal of over-anthropized ecosystems where human activities 
have an impact on biodiversity levels (Chowdhury et al. 
2023). As it is known in the scientific literature, natural 
environments that are little subject to human activities pre-
sent constant levels of biodiversity. In fact, in the forest site, 
the relationship between the number of beetle species and 
trophic categories (i.e., predators and prey) seems to be in 
balance (see Table 5). A similar relationship, between preda-
tors and prey, was observed in the Ghigiano site (abandoned 
oak forest) and in the urban site. In the latter, the trees in 
the site (mainly holm oaks) probably favored a good pres-
ence of species despite the urban park management activities 
(Sabatelli et al. 2023

Conclusions

Combined biomonitoring generally might offer several 
advantages in environmental assessment and monitoring 
compared to single-taxon biomonitoring. Different species 
have varying sensitivities and ecological roles, making 
them indicators of diverse aspects of environmental qual-
ity. Furthermore, the use of different organisms helps over-
come the limitations of relying solely on a single group, 
which might not be present in the entire study area. This 
work highlights how combining the response of taxonomic 
groups with different life cycles can provide information 
about environmental conditions across various time spans 
or at specific moments. In a complex environment like 
the study area, including several ecosystems and pollu-
tion sources, this approach provides a more comprehensive 
and nuanced understanding of environmental conditions 

and changes. The sampling design highlighted the differ-
ent effects of anthropized ecosystems to element diffu-
sion in the environment. In detail, the sampling in forest 
sites resulted necessary to isolate signal of industrial and 
urban activities. Integrating data from various biomoni-
toring approaches, despite discrepancies, offers a holistic 
understanding of environmental changes, identifies pollu-
tion sources, and informs conservation and management 
efforts. Additionally, such studies should focus on provid-
ing data for mapping and visualizing biomonitoring, aid-
ing in raising awareness, guiding land management deci-
sions, and supporting conservation strategies. However, 
to be effective, this combined approach requires support 
from multiple case studies, and consistent and numerous 
sampling sites are essential.
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